Key Answer

Class: 9

Subject: Mathematics
I. 1. C) 3
2. D) 27
5. D) 75°
8. B) II
3. C) Infinitely many solutions
4. A) $\mathrm{AC}=\mathrm{BD}$
7. A) $\frac{2}{3}$
6. B) $\frac{4}{3} \pi r^{3}$ cubic units
$(8 \times 1=8)$
II. 9. $\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
10. $\mathrm{p}(\mathrm{x})=\mathrm{x}-5=0 \therefore \mathrm{x}=5$
11. Number of common points $=1$
12. $\operatorname{ar}(\triangle \mathrm{ABC})=2 \times \operatorname{ar}(\triangle \mathrm{ABD})$

$$
\begin{aligned}
& =2 \times 30 \\
& =60 \mathrm{~cm}^{2}
\end{aligned}
$$

13. $\mathrm{PM}=\frac{1}{2} \mathrm{PQ}(\because$ perpendicular drawn from the centre of circle to the chord bisects the chord $)$

$$
\begin{align*}
& =\frac{1}{2} \times 6 \tag{1/2}\\
\mathrm{PM} & =3 \mathrm{~cm} \tag{1/2}
\end{align*}
$$

14. LSA of cube $=4 a^{2}$ sq. units
15. CSA of hemisphere $=2 \pi r^{2}$

$$
\begin{align*}
& =2 \times \frac{22}{7} \times 7 \times 7 \tag{1/2}\\
& =44 \times 7=308 \mathrm{~cm}^{2}
\end{align*}
$$

16. The point $P(5,2)$ is at a distance of 2 units from the x-axis.

Note : Full marks can be given to the direct answers for the questions from 9 to 16 .
III. 17. $\mathrm{x}=0 . \overline{6} \quad \therefore \mathrm{x}=0.6666 \ldots \ldots$
$10 x=6.6666 \ldots$.
$(1 / 2) \quad 10 x-x=6.0$
$9 x=6$
$(1 / 2) \quad \therefore \mathrm{x}=\frac{6}{9} \quad \therefore \mathrm{x}=\frac{2}{3}$
18. $3 y=a x+7$

Since $(3,4)$ is a point on the graph of the equation,

$$
\begin{align*}
& 3(4)=a(3)+7 \tag{1/22}\\
& 3 a=12-7 \tag{1/2}
\end{align*}
$$

$$
\begin{equation*}
(1 / 2) \tag{1/2}
\end{equation*}
$$

$$
\begin{aligned}
& 12=3 a+7 \\
& 3 a=5 \therefore a=\frac{5}{3}
\end{aligned}
$$

19.

$\lfloor\mathrm{ABC}=\lfloor\mathrm{ACB}-(1)(\because$ angles opposite to equal sides are equal $)$
$\underline{\mathrm{DBC}}=\square \mathrm{DCB}-(2)(\because$ angles opposite to equal sides are equal $)$
Adding equations (1) and (2)

$$
\begin{align*}
\lfloor\mathrm{ABC}+\mid \mathrm{DBC} & =\lfloor\mathrm{ACB}+\lfloor\mathrm{DCB} \tag{1/2}\\
\lfloor\mathrm{ABD} & =\lfloor\mathrm{ACD}
\end{align*}
$$

Alternate method :
Construction : Join AD
Proof : In $\triangle A B D$ and $\triangle A C D$,
$\left.\begin{array}{l}\mathrm{AB}=\mathrm{AC}(\because \text { Given }) \\ \mathrm{BD}=\mathrm{DC}(\because \text { Given }) \\ \mathrm{AD}=\mathrm{AD}(\because \text { Common }) \\ \therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}(\because \mathrm{SSS})\end{array}\right\}$
$\lfloor\mathrm{ABD}=\boxed{\mathrm{ACD}}(\because \mathrm{CPCT})$
20.

$$
\operatorname{ar}(\triangle \mathrm{CPR})=24 \mathrm{~cm}^{2}, \mathrm{AD}=8 \mathrm{~cm}
$$

Since BCRP and BCDA are parallelograms $\therefore \mathrm{BC}=\mathrm{PR}$ and $\mathrm{BC}=\mathrm{AD}$
$\therefore \operatorname{ar}(B C R P)=\operatorname{ar}(\operatorname{ABCD})(\because$ parallelograms are on equal bases and between same parallels $)$
\therefore area $(\mathrm{ABCD})=2 \times \operatorname{area}(\triangle \mathrm{CPR})$

$$
=2 \times 24=48 \mathrm{~cm}^{2}
$$

area $(A B C D)=$ base \times height $\quad \therefore 48=8 \times \mathrm{h} \quad \therefore \mathrm{h}=\frac{48}{8} \quad \therefore \mathrm{~h}=6 \mathrm{~cm}$
Note : Marks should be given to the correct alternative method.
21. $\mathrm{r}=\frac{\mathrm{d}}{2}=\frac{14}{2}=7 \mathrm{~cm}$

CSA of cone $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{\not 7} \times \not 7 \times 25 \\
& =22 \times 25=550 \mathrm{~cm}^{2}
\end{aligned}
$$

22. $\mathrm{r}=7 \mathrm{~m}$

Area available for motor riding $=$ CSA of sphere

$$
\begin{aligned}
\mathrm{CSA} & =4 \pi \mathrm{r}^{2} \\
& =4 \times \frac{22}{7} \times 7 \times 7 \\
& =88 \times 7=616 \mathrm{~m}^{2}
\end{aligned}
$$

23.

To draw x -axis and y -axis with suitable scale
Construction of rectangles
24. Probability that a student likes mathematics

$$
\begin{aligned}
& =\frac{\text { Number of students who like mathematics }}{\text { Total number of students }} \\
\mathrm{P}(\mathrm{~A}) & =\frac{135}{200}
\end{aligned}
$$

Probability that a student does not like mathematics

$$
=\frac{\text { Number of students who does not like mathematics }}{\text { Total number of students }}
$$

$$
\mathrm{P}(\mathrm{~B})=\frac{65}{200}
$$

IV. 25 .

'C' represents $\sqrt{3}$
To draw $\sqrt{2}$
To locate $\sqrt{3}$
Note : Full marks should be given for correct alternate method.
26.

Data : ABC is a triangle.
Construction : Draw XY \| BC passing through the point ' A '.
Proof:

$\therefore \triangle \mathrm{ABC}+\triangle \mathrm{BAC}+\triangle \mathrm{ACB}=180^{\circ}(\because$ from equation (1) and equation (2) $)$
Hence proved.
27.

$x+y=4$

x	0	1	2	3
y	4	3	2	1
(x, y)	$(0,4)$	$(1,3)$	$(2,2)$	$(3,1)$

To draw x and y -axis with suitable scale
$(1 / 2)$ To write the table
(1) To draw the line $\mathrm{x}+\mathrm{y}=4$
28. $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$27 x^{3}+y^{3}+z^{3}-9 x y z$

$$
\begin{align*}
& =(3 x)^{3}+y^{3}+z^{3}-3(3 x) y z \tag{1}\\
& =(3 x+y+z)\left((3 x)^{2}+y^{2}+z^{2}-(3 x) y-y z-(3 x) z\right) \tag{1/2}\\
& =(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)
\end{align*}
$$

29.

Data: $\triangle \mathrm{C}=90^{\circ}, \mathrm{DM}=\mathrm{CM}$ and $\mathrm{AM}=\mathrm{BM}$
To prove : i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD} \quad$ ii) $\left\lfloor\mathrm{DBC}=90^{\circ}\right.$
Proof : In $\triangle \mathrm{AMC}$ and $\triangle \mathrm{BMD}$,
$\mathrm{AM}=\mathrm{BM}(\because$ Data $)$
\lfloor AMC $=\boxed{B M D}(\because$ vertically opp. angles $)$
$\mathrm{CM}=\mathrm{DM}(\because$ Data $)$
$\therefore \triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}(\because$ SAS rule $)$
$\therefore \mid M A C=M$ MBD $(\because \mathrm{CPCT})$
$\Rightarrow \mathrm{AC}|\mid \mathrm{DM}(\because$ alternate angles equal $)$
$\therefore \triangle \mathrm{DBC}=\triangle \mathrm{ACB}=90^{\circ}$
30. The angles of quadrilateral are $3 x, 5 x, 9 x$ and $13 x$.
$\therefore 3 x+5 x+9 x+13 x=360^{\circ}(\because$ sum of four angles of quadrilateral $)$
$\therefore 30 x=360^{\circ}$
$\therefore \mathrm{x}=\frac{360^{\circ}}{30}$
$\therefore \mathrm{x}=12^{\circ}$
\therefore Angles of quadrilateral are

$$
\begin{array}{ll}
3 x=3\left(12^{\circ}\right)=36^{\circ}, & 5 x=5\left(12^{\circ}\right)=60^{\circ} \\
9 x=9\left(12^{\circ}\right)=108^{\circ}, & 13 x=13\left(12^{\circ}\right)=156^{\circ}
\end{array}
$$

31.

$\triangle \mathrm{APB}=\triangle \mathrm{ACB}(\because$ Angles in the same segment $)$
$\therefore \triangle \mathrm{APB}=40^{\circ}$
$\left\lfloor\mathrm{APB}+\triangle \mathrm{ADB}=180^{\circ}(\because \mathrm{ADBP}\right.$ is a cyclic quadrilateral $)$
$40^{\circ}+\triangle \mathrm{ADB}=180^{\circ}$
$\triangle \mathrm{ADB}=180^{\circ}-40^{\circ}$
$\triangle \mathrm{ADB}=140^{\circ}$
$\triangle \mathrm{AOB}=2 \mathrm{APB}(\because$ Central angle is twice of the inscribed angle $)$
$\triangle \mathrm{AOB}=2 \times 40^{\circ}$
$\triangle \mathrm{AOB}=80^{\circ}$
$(1 / 2)$
In $\triangle \mathrm{OAB}$,

$$
\left.\begin{aligned}
& |\mathrm{AOB}+| \mathrm{OAB}
\end{aligned}+\underline{\mathrm{OBA}}=180^{\circ} \mathrm{ABB}+2 \right\rvert\, \mathrm{OAB}=180^{\circ} .
$$

$$
2 \mathrm{OAB}=100^{\circ}
$$

$$
\boxed{\mathrm{OAB}}=\frac{100^{\circ}}{2}
$$

$$
\mathrm{OAB}=50^{\circ}
$$

32.

Perimeter $=96 \mathrm{~m}$
Let length of one side be ' x ' m and other side will be $(x+16) m$
$\therefore x+x+16+32=96$
$2 x+48=96$
$2 x=96-48$
$2 x=48$
$\mathrm{x}=\frac{48}{2}$
$\mathrm{x}=24 \mathrm{~m}$
\therefore sides of the triangle are $32 \mathrm{~m}, 24 \mathrm{~m}$ and 40 m .
$\therefore \mathrm{S}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=\frac{32+24+40}{2}=\frac{96}{2}=48 \mathrm{~m}$
\therefore Area of the triangular field
$=\sqrt{S(S-a)(S-b)(S-c)}$
$=\sqrt{48(48-32)(48-24)(48-40)}$
$=\sqrt{48(16)(24)(8)}$
$=\sqrt{16 \times 3 \times 16 \times 3 \times 8 \times 8}$
$=3 \times 8 \times 16$
$=384 \mathrm{~m}^{2}$
33. Arranging the goals scored by a team in ascending order,
we get $0,1,2,3,3,3,3,4,4,5$
Mean $=\frac{\text { Sum of the scores }}{\text { Number of scores }}$
$\overline{\mathrm{x}}=\frac{\sum \mathrm{x}}{\mathrm{N}}$

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{0+1+2+3+3+3+3+4+4+5}{10} \\
& =\frac{28}{10}
\end{aligned}
$$

$\overline{\mathrm{x}}=2.8$
Median : Middle most score in a set of arranged score.

$$
\begin{aligned}
\therefore & \text { Median }=\frac{3+3}{2} \\
& \text { Median }=3 \\
& \text { Mode }=3
\end{aligned}
$$

v. 34 .

To draw $\mathrm{XY}=11 \mathrm{~cm}$
To construct 60° and 90° at X and Y
To draw angular bisectors AX and AY
To draw perpendicular bisectors to AX and AY
To draw $\triangle A B C$
35. $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-13 \mathrm{x}+\mathrm{k}$
since $(x-4)$ is a factor of $p(x), p(4)=0$

$$
\begin{aligned}
\mathrm{p}(4)=4^{2}-13(4)+\mathrm{k} & =0 \\
16-52+\mathrm{k} & =0 \\
-36+\mathrm{k} & =0 \\
\mathrm{k} & =36
\end{aligned}
$$

$$
p(x)=(x-9)(x-4)
$$

\therefore The other factor of $\mathrm{p}(\mathrm{x})$ is $(\mathrm{x}-9)$
Note : Marks should be given to the correct alternate method.
36.

Class interval	Tallies	Frequency
0-5	ННІ UН	10
5-10	ННІ НИI III	13
10-15	ННI	05
15-20	II	02

i) Two students watch T.V. for 15 or more hours.
ii) Maximum number of students watch T.V. for 5 to 10 hours.
37. Dimension of cuboid $=5 \mathrm{~cm} \times 8 \mathrm{~cm} \times 15 \mathrm{~cm}$

Juice in cuboid packet $=$ Volume of cuboid
$\mathrm{V}=1 \times \mathrm{b} \times \mathrm{h}$
$=5 \times 8 \times 15$
$=40 \times 15$
$\mathrm{V}=600 \mathrm{~cm}^{3}$
Juice in cylindrical packet $=$ Volume of cylinder
$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$
$=\frac{222^{11}}{7} \times \frac{7}{\not 2} \times \frac{7_{1}^{1}}{22} \times 16_{1}^{8}$
$=77 \times 8$
$\mathrm{V}=616 \mathrm{~cm}^{3}$
Capacity of the cylindrical packet is more than cuboid.
VI. 38. Mid-point theorem statement : "The line segment joining the mid-points of two sides of a triangle is parallel to the third side."

Data : Points E and F are the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$ respectively. Join EF.
To prove : EF || BC.
Construction : Draw CX \| BA, EF is produced to meet CX at D.
Proof: In $\triangle A E F$ and $\triangle C D F$,
$\triangle \mathrm{AFE}=$ CFD (\because vertically opp. angles)
$\mathrm{AF}=\mathrm{FC} \quad\left(\because{ }^{\prime} \mathrm{F}\right.$ ' is mid-point of AC$)$
$\triangle \mathrm{AEF}=\triangle \mathrm{CDF}(\because$ alternate angles $)$
BA \| CX.
$\therefore \triangle \mathrm{AEF} \cong \triangle \mathrm{CDF}(\because$ ASA rule $)$
$\therefore \mathrm{EF}=\mathrm{DF} \quad(\because \mathrm{CPCT})$
$\mathrm{AE}=\mathrm{CD} \quad(\because \mathrm{CPCT})$
But $\mathrm{AE}=\mathrm{BE} \quad(\because$ Given $)$
$\therefore \mathrm{CD}=\mathrm{BE}$ also $\mathrm{CD} \| \mathrm{BE}$
$\therefore \mathrm{BCDE}$ is a parallelogram
$\therefore \mathrm{EF} \| \mathrm{BC} \quad(\because \mathrm{ED}| | \mathrm{BC}$ opp. sides of parallelogram)
Hence proved

