			Key A	nswer	
Cla	iss:	:9	Subject : Math	iematics	9/21
I.	1.	C) 3	2. D) 27	3. C) Infinitely many solution	s
	4.	A) AC = BD	5. D) 75°	6. B) $\frac{4}{2}\pi r^3$ cubic units	
	7.	A) $\frac{2}{3}$	8. B) II	3	(8×1=8)
II.	9.	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$			(1)
	10.	$p(x) = x - 5 = 0 \therefore x = 5$			(1)
	11.	Number of common points	8 = 1		(1)
	12.	ar ($\triangle ABC$) = 2 × ar ($\triangle ABD$) = 2 × 30			(1/2)
		$= 60 \text{ cm}^2$			(1/2)
	13.	$PM = \frac{1}{2}PQ$ (:: perpendicula	ar drawn from the cer	ntre of circle to the chord bisects the chord)	
		$=\frac{1}{2} \times 6$			(1/2)
		PM = 3 cm			(1/2)
	14.	LSA of cube = $4a^2$ sq. unit	S		(1)
	15.	CSA of hemisphere = $2\pi r^2$			
		$=2\times\frac{2}{2}$	$\frac{2}{7} \times 7 \times 7$		(1/2)
$7 = 44 \times 7 = 308 \text{ cm}^2$					(1/2)
	16.	The point $P(5, 2)$ is at a dis	stance of 2 units fro	m the x-axis.	(1)
No	ote :	Full marks can be given to	o the direct answers	for the questions from 9 to 16.	
III.	17.	$x = 0.\overline{6} \therefore x = 0.6666$			
		10x = 6.6666	(1/2)	10x - x = 6.0	(1/2)
		9x = 6	(1/2)	$\therefore \mathbf{x} = \frac{\mathbf{b}}{0} \therefore \mathbf{x} = \frac{2}{2}$	(1/2)
	18.	3y = ax + 7 Since (2, 4) is a point on the	he graph of the equa	y S	
		3(4) = a(3) + 7	(16) ne graph of the equa	12 - 30 + 7	(1/-)
		S(4) = a(5) + 7	(72)	12 - 3a + 7 5	(72)
		3a = 12 – 7	(1/2)	$3a = 5 \therefore a = \frac{1}{3}$	(1/2)
	19.				
		B C			
		D			
	ABC = ACB - (1) (: angles opposite to equal sides are equal)				(1/2)
		$\frac{ \text{DBC} }{ \text{DBC} } = \frac{ \text{DCB} }{ \text{CB} } - (2) \text{ (:: angles opposite to equal sides are equal)}$			
		ABC + DBC = ACB + D)CB		
		$ \Delta RD - \Delta CD $			(7/2)
					(1/2)
			-	1-	P.T.O .

(1/2)

(1)

Since BCRP and BCDA are parallelograms \therefore BC = PR and BC = AD ($\frac{1}{2}$)

 \therefore ar (BCRP) = ar (ABCD) (\therefore parallelograms are on equal bases and between same parallels)

$$\therefore$$
 area (ABCD) = 2 × area (\triangle CPR) (¹/₂)

$$= 2 \times 24 = 48 \text{ cm}^2$$
 ($\frac{1}{2}$)

area (ABCD) = base × height $\therefore 48 = 8 \times h$ $\therefore h = \frac{48}{8}$ $\therefore h = 6 \text{ cm}$ (1/2)

Note : Marks should be given to the correct alternative method.

21.
$$r = \frac{d}{2} = \frac{14}{2} = 7 \text{ cm}$$
 (½)

CSA of cone = π rl

$$=\frac{22}{\cancel{7}}\times\cancel{7}\times25$$

$$= 22 \times 25 = 550 \text{ cm}^2$$
 (¹/₂)

22. r = 7 m

Area available for motor riding = CSA of sphere

 $CSA = 4\pi r^2$

$$=4\times\frac{22}{7}\times7\times7$$

$$= 88 \times 7 = 616 \text{ m}^2$$
 (½)

To locate $\sqrt{3}$

To draw $\sqrt{2}$

'C' represents $\sqrt{3}$

-1

€

Note : Full marks should be given for correct alternate method.

Sr.

Õ

1

C 2

1

(2)

(1)

9/21

Hence proved.

27.

To draw x and y-axis with suitable scale To mark the points
 (½)
 To write the table
 (1)

 (1)
 To draw the line x + y = 4
 (½)

28.
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z) (x^2 + y^2 + z^2 - xy - yz - zx)$$

 $27x^3 + y^3 + z^3 - 9xyz$
(1/2)

$$(3x)^3 + y^3 + z^3 - 3(3x)yz$$
(1)

$$= (3x + y + z) ((3x)^{2} + y^{2} + z^{2} - (3x)y - yz - (3x)z)$$
(⁴/₂)

$$(3x + y + z) (9x2 + y2 + z2 - 3xy - yz - 3xz)$$
(1)

=

В	e	
Data : $\underline{C} = 90^\circ$, DM	I = CM and AM = BM	
To prove : i) ∆AMC ≅	ΔBMD	ii) <u>DBC</u> = 90°
Proof : In \triangle AMC and	l ΔBMD,	
AM = BM (·· Data)		
$\underline{AMC} = \underline{BMD}$ (: ve	ertically opp. angles)	
CM = DM (·· Data)		
$\cdot \Lambda \Lambda MC \sim \Lambda DMD($	SAS mulo)	

$$\therefore \Delta AMC \cong \Delta BMD (:: SAS rule)$$

$$\therefore |MAC| = |MBD| (:: CPCT)$$

$$(1/2)$$

$$(1/2)$$

$$\Rightarrow AC \mid\mid DM (: alternate angles equal)$$

$$\therefore \mid \underline{DBC} = \mid \underline{ACB} = 90^{\circ}$$
(¹/₂)

30. The angles of quadrilateral are
$$3x$$
, $5x$, $9x$ and $13x$.($\frac{1}{2}$) $\therefore 3x + 5x + 9x + 13x = 360^{\circ}$ (\because sum of four angles of quadrilateral)($\frac{1}{2}$) $\therefore 30x = 360^{\circ}$ ($\frac{1}{2}$)

$$\therefore x = \frac{360^{\circ}}{30}$$

$$\therefore x = 12^{\circ}$$

$$\therefore \text{ Angles of quadrilateral are}$$
(¥2)

$$3x = 3(12^{\circ}) = 36^{\circ}, 5x = 5(12^{\circ}) = 60^{\circ}, 13x = 13 (12^{\circ}) = 156^{\circ} (1)$$

APB = ACB (:: Angles in the same segment)	
$\therefore APB = 40^{\circ}$	(1/2)
$APB + ADB = 180^{\circ}$ (:: ADBP is a cyclic quadrilateral)	(1/2)
$40^{\circ} + ADB = 180^{\circ}$	
$\underline{ADB} = 180^{\circ} - 40^{\circ}$	
$ADB = 140^{\circ}$	(1/2)

	AOB = 2 APB (: Central angle is twice of the inscribed angle) $ AOB = 2 \times 40^{\circ}$	
	$AOB = 80^{\circ}$	(1⁄2)
	$ AOB + OAB + OBA = 180^{\circ}$	
	$ AOB + 2 OAB = 180^{\circ}$	
	$2 \underline{OAB} = 180^{\circ} - \underline{AOB} $	
	$= 180^{\circ} - 80^{\circ}$	(1⁄2)
	$2 OAB = 100^{\circ}$	•••
	$OAB = \frac{100^{\circ}}{100}$	
	$\underline{\text{OMB}} = \frac{1}{2}$	(1/2)
	$OAB = 50^{\circ}$	(/2)
32.	Perimeter = 96 m Let length of one side be 'x' m and other side will be (x + 16) m $\therefore x + x + 16 + 32 = 96$ 2x + 48 = 96 2x = 96 - 48 2x = 48	(1/2)
	$x = \frac{48}{3}$	
	2	
	x = 24 m	(1⁄2)
	\cdots sides of the triangle are 32 m, 24 m and 40m.	
	$\therefore S = \frac{a+b+c}{2} = \frac{32+24+40}{2} = \frac{30}{2} = 48 \text{ m}$	(1⁄2)
	2 2 2	
	$= \sqrt{S(S-2)(S-b)(S-c)}$	
		(1⁄2)
	$= \sqrt{48(48 - 32)(48 - 24)(48 - 40)}$	
	$=\sqrt{48}(16)(24)(8)$	(1/2)
	$=\sqrt{16\times3\times16\times3\times8\times8}$	
	$= 3 \times 8 \times 16$	
	$= 384 \text{ m}^2$	(1⁄2)
33.	Arranging the goals scored by a team in ascending order, we get 0, 1, 2, 3, 3, 3, 3, 4, 4, 5	(½)
	Mean = $\frac{\text{Sum of the scores}}{\text{N} + 1 + 2}$	
	Number of scores $\Sigma \mathbf{x}$	
	$\overline{\mathbf{x}} = \frac{2 - 1}{N}$	(1⁄2)

$$\bar{x} = \frac{0 + 1 + 2 + 3 + 3 + 3 + 3 + 4 + 4 + 5}{10}$$

$$= \frac{28}{10}$$
(¹/₂)
 $\bar{x} = 2.8$
(¹/₂)
Median : Middle most score in a set of arranged score.
(¹/₂)

$$\therefore \text{Median} = \frac{3}{2} \tag{2}$$

$$Median = 3$$

$$Mode = 3$$

$$(1/2)$$

V. 34.

To draw XY = 11 cm($\frac{1}{2}$)To construct 60° and 90° at X and Y(1)To draw angular bisectors AX and AY(1)To draw perpendicular bisectors to AX and AY(1)To draw Δ ABC($\frac{1}{2}$)35. $p(x) = x^2 - 13x + k$

since (x - 4) is a factor of p(x), p(4) = 0(1/2) $p(4) = 4^2 - 13(4) + k = 0$ (1/2)16 - 52 + k = 0(1/2)-36 + k = 0(1/2)(1/2)(1/2)

$$k = 36$$

$$\therefore p(x) = x^2 - 13x + k$$

$$= x^2 - 13x + 36$$
(1/2)

$$= \frac{x^{2} - 9x - 4x + 36}{(1/2)}$$

$$= x(x - 9) - 4(x - 9)$$
(1/2)

$$p(x) = (x - 9) (x - 4)$$
(1/2)

 \therefore The other factor of p(x) is (x – 9)

 $\ensuremath{\textbf{Note}}$: Marks should be given to the correct alternate method.

36.	Class interval	Tallies	Frequency
	0 – 5	JAN JAN	10
	5 – 10	JUAT JUAT III	13
	10 – 15	J¥Ĩ	05
	15 – 20	II	02
			Total 30

i) Two students watch T.V. for 15 or more hours.

ii) Maximum number of students watch T.V. for 5 to 10 hours.

(1) (1)

(2)

9/21

(1/2)

(1)

(1/2)

(1/2)

37. Dimension of cuboid = 5 cm \times 8 cm \times 15 cm

Juice in cuboid packet = Volume of cuboid

$$V = 1 \times b \times h \tag{42}$$

$$= 5 \times 8 \times 15 \tag{72}$$
$$= 40 \times 15$$

$$V = 600 \text{ cm}^3$$
 (¹/₂)

Juice in cylindrical packet = Volume of cylinder

$$V = \pi r^2 h$$
 (1/2)

$$=\frac{22}{7}\times\frac{7}{2}\times\frac{7}{2}\times\frac{1}{2}\times16$$
^($\frac{1}{2}$)

$$= 77 \times 8 \tag{7}{2}$$

$$V = 616 \text{ cm}^3$$
 (½)

Capacity of the cylindrical packet is more than cuboid.

VI. 38. Mid-point theorem statement : "The line segment joining the mid-points of two sides of a triangle is parallel to the third side." (1)

Data : Points E and F are the mid-points of the sides AB and AC of ΔABC respectively. Join EF.(½2)To prove : EF || BC.(½2)Construction : Draw CX || BA, EF is produced to meet CX at D.(½2)

Proof : In $\triangle AEF$ and $\triangle CDF$,

|AFE| = |CFD| (: vertically opp. angles)

AF = FC (: 'F' is mid-point of AC)

AEF = CDF (: alternate angles)

BA || CX.

 $\therefore \Delta AEF \cong \Delta CDF \ (\therefore ASA rule)$

 $\therefore EF = DF \qquad (\because CPCT)$ $AE = CD \qquad (\because CPCT)$

But AE = BE	(∵Given)
-------------	----------

```
\therefore CD = BE also CD || BE
```

 \therefore BCDE is a parallelogram

 \therefore EF||BC (\therefore ED || BC opp. sides of parallelogram)

Hence proved